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This paper presents a novel fault isolation filter design method using left eigenstructure
assignment scheme proposed by the first author et al. The proposed method shows good
performance of fault isolation with an exact eigenstructure assignment and guarantees that the
corrupted r faults can be isolated simultaneously when the number of available output
measurements are equal to or larger than (r + 1). A numerical example for the fault isolation
filter is also included.
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1. Introduction

In recent years, there has been growing interest
in the application of model-based fault detection
and isolation theory in the aerospace, chemical,
automotive, and other industries (Park and Riz­
zoni, 1994). A fault occurring in these industries
may cause loss of lives and huge financial dam­
age, so the prevention of faults is becoming more
important.

In the early years of research, fault detection
and isolation was achieved simply through hard­
ware replication. For example, if a required sen­
sor is triplicated or quadruplicated, the outputs of
sensors can be compared directly with each other,
and if one output deviates significantly from the
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others, that sensor can be declared a failure
(Massoumnia and Vander Velde, 1988; Saif and
Guan, 1993). However, recently, due to the ineffi­
ciency of the replication of components, interest
has shifted to the use of analytic redundancy
rather than massive hardware redundancy. Unlike
hardware replication, analytic redundancy
depends on a dynamic model of a controlled
system to relate actuator commands and sensor
outputs, thus enabling checks for consistency
without directly comparing the outputs of re­
plicated components. However, this approach is
known to have an undesired consequence, that is,
errors in the representation of the system
dynamics or parameter variations may cause con­
fusion in the detection and isolation of compo­
nent failures (Saif and Guan, 1993).

Many FDl (Fault Detection and Isolation)
methods have been developed to accommodate
unknown exogenous disturbances in the dynamics
of considered plants. Willsky (1976) proposed
several fault diagnosis methods for a given system
model, and Isermann (1984) and Frank (1990)
have arranged and classified the following ana-
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lytic redundancy methods: the parity space
method (PSM) , the parameter identification
method (PIM), and the observer method (OM).

Among the above-mentioned approaches, the
method using an unknown input observer scheme
is widely used for FDI, since most actuator fail­
ures can be generally modeled as unknown inputs
of the system. However, in the unknown input
observer, fault isolation results can only be
obtained under certain conditions, for example, a
system must be observable, and the eigenvalues
must be assigned to different values, etc. Under
any condition, a bank of observers must be em­
ployed to isolate multiple faults, since one
observer is designed to monitor a single fault
only, with all other faults being modeled as
unknown inputs (Liu and Si, 1997). In the
method presented in (Patton and Chen, 1991)
and (Patton and Kangethe, 1989), an eigen­
structure assignment scheme is used for designing
a diagnostic observer, however, a bank of
observers is nevertheless still needed to accommo­
date multiple faults.

Liu and Si (1997) proposed a new filter design
method to deal with this shortcoming. Their
proposed filter design method is concerned with
the problem of (asymptotically) isolating simulta­
neous multiple faults by a full-order observer for
a continuous-time system. This fault isolation
filter uses a static-state feedback decoupling
method in which one can distinguish r simultane­
ous faults, if and only if r output measurements
exist. However, this filter has (n - r) invariant
eigenvalues, and asymptotic fault isolation results
can only be obtained when they are stable, where
n represents the system order. For this reason,
Liu and Si's method has limitations, in that it can
only be used in some restricted systems.

In this paper, we propose a novel fault isolation
filter design method using a left eigenstructure
assignment scheme proposed by the first author et
al. in (Choi, et aI., 1995 ; 1998a ; 1998b).
Compared with the existing Liu and Si's filter, the
proposed filter shows good fault isolation perfor­
mance as well as the following advantages: i) all
the eigenvalues of the designed filter (n) can be
assigned exactly to the desired ones (in Liu and

Si's method, only r eigenvalues can be assigned
to the desired ones), ii) the required conditions
for designing the filter are alleviated. In this
method, we can guarantee that the corrupted r
simultaneous faults can be isolated when the
number of available output measurements are
equal to or larger than (r + I) .

2. Observer-Based Fault
Isolation Filter

In this section, we need to establish the nota­
tions for fault isolation, which will be used in the
following sections. Consider the following
n-dimensional linear time-invariant system

i: (t) =Ax(t) + Bu (t) + Ef i.t), x(to) =Xo

y(t)=Cx(t) (I)

where xER", uERm
, yER I

, and fER' are the
state, control, sensor output, and fault vectors,
respectively. A, B, C are constant matrices with
appropriate dimensions. It is assumed that (Co

A) is observable. E, an n X r matrix with a full
column rank, is considered to be the fault matrix,
and f is a vector that consists of some unknown
functions of time. f (t) is identically equal to zero
when the system functions properly, and deviates
from zero whenever a fault occurs.

We intend to design an observer, which is also
referred to as the fault isolation filter of the form

:i (t) =A£ (t) +Bu (t) +H (y (t) - C£ (t)),

£ (to) = £0
r(t)=R(y(t)-C£(t)) (2)

where r(t)ER' is a residual vector. Let c=x

- £ be the error of state estimation, then r is
governed by the following equations.

E: (t) = (A - HC) c(t) +Ef i.t),

cUo) =xo- £0

r (t) =RCcU) (3)

where e(to) is the initial error of the state estima­
tion. The matrices Hand R of appropriate
dimensions are the parameters to be determined
such that the ith component of the residual r is
decoupled (asymptotically) from all but the ith
fault.

It is more convenient to represent the residual
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matrices of (A - HC) , respectively; that is, $ and
lJf satisfy

Theorem 1 (Patten and Chen, 1991) If $

and lJf are the right and left modal matrices,
respectively, then

where A is the diagonal matrix with desired
eigenvalues. Column vectors of $ and lJf are
right eigenvectors and left eigenvectors of (A

- HC), respectively. Note that there exists biorth­
ogonality between $ and lJf.

r (t) as follows:

r( t) = RCe.CA-HCHt-tolc( to)

+RCjteCA-HCHt-r>E!(r)dr (4)
to

where e (to) is assumed to be unknown. The
design parameters Hand R must be chosen so
that the faults in the second term of the right­
hand-side of Eq. (4) can be isolated. If all
eigenvalues of (A - HC) have negative real
parts, then the effects of the initial estimation
error will vanish as t approaches infinity. In that
case, Eq. (4) can be rewritten briefly as follows:

r (t) =RCjteCA-HCHt-r>E! (r) dt (5)
to

(A-HC) $=$A
lJfT (A - He) = A lJfT

lJfT$=I

(7)

(8)

We can detect the fault occurrence from Eq. (5);
however, we cannot isolate simultaneous faults.
In order to isolate r simultaneous faults, r (t)

should be described in the following form:

Using $ and lJf, r (t) can be represented by
(Junkins and Kim, 1993)

r(t)=RC$jteACHllJfTE!(r)dr (9)
to

(6)

It is not difficult to see that r (t) can be expres­
sed in the form of Eq. (6) if there exist Hand R
such that the following is satisfied:

where values of [ ... J part are irrelevant.
The first step of the fault isolation filter by the

left eigenstructure assignment is to determine lJf.
The left modal matrix lJf should satisfy the fol­
lowing two conditions:

• Condition I: lJf should be achievable: that is,
there should exist a filter gain H such that Eq.
(7) is satisfied.

• Condition 2: lJf should satisfy Eq. (10).
First, condition 1 is considered in the following

theorem:

Theorem 2 Let {AI' A2' "', An} be a self­
conjugate set of distinct complex numbers. Let
SA, be defined by

SA,=: [AJn- AT I CTJ

and a compatibly partitioned matrix

[

eA'Ct_rl! l ( r )

j
t eA2Ct-r)!2 (r)

r(t) = . dt
to :

eAr(t-r>!r (r)

where th, A2, "', Ar are the desired eigenvalues of
the observer.

In this paper, r simultaneous faults are said to
be isolated if there exist Hand R such that Eq.
(6) is achieved. At that time, the filter is called
the fault isolation filter. The objective of this
paper is to determine matrices Hand R such that
r simultaneous faults can be isolated. To do this,
we apply the left eigenstructure assignment
scheme.

3. Left Eigenstructure Assignment
for Fault Isolation

Based on the left eigenstructure assignment, a
sufficient existence condition of the fault isolation
filter is given in Subsection 3.1. The design proce­
dure for the fault isolation filter is provided in
Subsection 3.2.

3.1 Left eigenstructure assignment condi­
tion for fault isolation

Let $ and lJf be the right and left modal

v:E = [-~-]
o nxr

RC$=[Ir 1···Jrxn

(10)

(11)
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where the columns of the matrix RA, form a
basis for the null space of SAt' There exists a
real (n X r) matrix H such that

,p[(A - HC) =Ai,pT, i= 1,2, "', n
if and only if, for each i:

1) The left modal matrix IF=[,pI' .. :- ,pn] is
nonsingular.

2) ,pi=,pl when Ai=AJ
3) 1J{Espan {NA,}.
Proof: The proof is a straightforward dual

argument of the right eigenvector assignment
result in (Andry, et aI., 1983). _

The above theorem indicates that a closed-loop
left eigenstructure assignment is constrained by
the requirement that the left eigenvectors lie in a
certain subspace.

Remark 1 If {Ai} is a self -conjugate set of
distinct complex numbers, then IF is nonsingular.

Thus from Theorem 1, the right modal matrix <J)

always exists and can be computed by <J) =
(1FT) -1. Thus, throughout this paper, it is

assumed that {Ai} is a self -conjugate set of
distinct complex numbers. '

Remark 2 Using Theorem 2, we can check
whether IF is achievable without computing H.

Secondly, condition 2 is considered in the fol­
lowing lemma.

Lemma 1 Let N E be an augmented null space
matrix E defined by

NE=[Null(ED Null(ED· ..Null(Ei) I
Null (E T

) I' ..Null (E T
) (n-rl]

where E, denotes the block matrix of Eo the ith
column of which is removed, and Null (.)
denotes the null space of the matrix (•). If ,pi is

chosen as follows

,pi= [Null(E[)]qi' (i=I, "', z )
,pi = [Null(ET)]qi' (i=r+l, ''', n)

for some qi=l=O, i=l, "', no then

alOO 0
o a2 0 0

o 0 ". 0

IFTE= 0 0 0 a- (12)

000 0

000 0

where IF=[;v" -v-, ,pn].
Proof: Consider ETIF. From the construction

of IF, Eq. (12) is immediate. -
Now conditions I and 2, which are constraints

imposed on IF, are considered simultaneously.
Lemma 2 If (0 denotes the empty set)

Null([N..I-Null(EiT)]) =1=O, (i= I, "', r)
Null ([NA,I-Null (E T

) ]) *0,
(i=r+l, ''', n), (13)

then there exists 1p; which satisfies conditions 1

and 2 simultaneously.
Proof: ,pi satisfies conditions I and 2 simulta­

neously if there exist Pi and qi satisfying

,pi=[N.,] • pi=[Null(E[)] • qi, (i=l, "', r)
(14)

;Vi = [N.,] •Pi= [Null (E T)] . qi' (i = r +I, "', n).

There exist Pi and qi satisfying Eq. (14) if and
only if

[
Pi]~~ ENull([N.,I-Null(E[)]), (i=l, "', z )

[
Pi]~~ ENull([N.,I-Null(ET)]), (i=r+l, "', n).

(15)

. Now Eq. (13) implies that there exist Pi and qi
satisfying Eq. (15); thus Eq. (13) implies Eq.
(14). •

If IJf satisfying conditions I and 2 exists, <J) can
be computed from Eq. (8): recall that IF is
nonsingular if Ai is chosen as in Theorem 2 and
thus $= (IFT)-l. Moreover, from rank (C<J)) =
rank(C) =1, R satisfying Eq, (10) always exists

if l e:r .
Now we are ready to state a sufficient existence

condition of Rand H satisfying Eg. (10).
Theorem 3 If I;;;: r + I (i.e., at least r +I

measurements are available), then r simultane­
ous faults can be isolated.

Proof: From the previous arguments, it suffices
to show that Eq. (13) is satisfied. Note the dimen­
sion of the following matrix:

dim[NA,I-Null(En])=nXa, (i=I, ''', r)

dim [N.,I - Null (E T
) ] ) = n x,6', (i= r + I, ''', n)
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From the construction of the above matrices, a
and (3 satisfy

a:::=-:n-r+I+I, (3:::=-:n-r+l.

Note that Eq. (13) is satisfied if a>n and (3)

n· From the assumption U:::=-: r + I), we have a>

nand (3)n. -

where pN is defined by

P" = [pf, pt}, "', pf, ... , p;TI

• Step 8: Compute vector chains and construct
the matrix W as follows:

• Step 9: Calculate the gain matrix H:

(Ad -A T) rpi+ CTHTrpi=O
(Ad - AT) N"p!j + CTM"pl(=0,

• Step 10: Construct the matrix $ = (1fJT)-1
and the residual output matrix R, so that Eq.

(10) is satisfied.

Remark 3 H in Eq. (16) is obtained by
comparing the following equations:

3.2 Left eigenstructure assignment algor­
ithm for fault isolation

The algorithm for the left eigenstructure assign­

ment for fault isolation is summarized.

• Step 1: Determine the desired eigenvalues

(Ai), where the set {Ai} should be a self-conjugate

set of distinct complex numbers.

• Step 2: Find the following matrices corre­

sponding to the desired eigenvalues (Ai)

H T= W (1fJ)-1 (16)

where the columns of the matrix R" form a

basis for the null space of S".
• Step 3: Find the following matrices corre­

sponding to the fault matrix E

NE = [Null (En Null (En ···Null (ErJ I
Null (E T

) 1" ·Null (E T
) (n-r)]

where r denotes the number of the maximum

simultaneous faults, and £iU=I, ..., r) denotes

the block matrix of E, the ith column of which is

removed.

• Step 4: Construct the augmented achievable

right modal matrix:

[NAP NA" ... , N." ..., N.,,]

• Step 5: Determine the parameter vectors Pi
and a. satisfying Eq. (15).

• Step 6: For normalization of the diagonal

parameters of the 1fJT£ (i. e., normalize a, in Eq.

(12) ), determine a parameter vector P'!:

p!j IIET~',Pillz Pi' (i= I, ... , z )

P!j=Pi' (i=r+l, ... , n)

• Step 7: Construct an achievable right modal

matrix 1fJ with a parameter vector p!j

1fJ= [N." N." ... , N." ..., N.n ] pN

where the second equation is from Theorem 2.

Equating H Trpi = M.,p!j, we obtain Eq. (16).

4. A Numerical Example

The system under consideration is a 4th-order

linearized continuous system:

i: (t) = Ax (t) +Bu (t) +Ef (t)

[

- 9.947 -0.7476 0.2632 5.0337

= 52.1659 2.7452 5.5532 - 24.4221 ()
26.0922 2.6361 -4.1975 -19.2774 x t

-0.0 -0.0 1.0 0.0

1OJ [1 2jo I 20
+ 00 u (t) + I I f(t)

00 3 I

y(t) =Cx(t)

[

I 0 0 0]
= 0 I 00 x(t)

a I I I

The eigenvalues of the open-loop system are

ilopen = { - 6.8262 - 1.0117± 1.5146i, - 2.5498}

Let the desired eigenvalues of the observer

system be

Then, the left modal matrix 1fJ is calculated as

follows:
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[

- 0.2349 0.6037 -0.0809 -0.08081
-0.0548 0.0591 -0.0824 -0.0838

I.Jf = 0.0324 0.0498 0.1199 0.1183 .

0.4373 -0.2573 0.0420 0.0434

If I.Jf is determined, then @= ( I.JfT) -I can be
determined, where C@ is calculated as follows:

[

1.0000 2.0000 -61.3430 61.0777 ]
C@= 2.0000 0.0000 415.5117 -421.8213 .

6.00002.0000 668.2516 -671.5509

Now compute R so that Eq. (10) is satisfied:

=[-0.6719 -1.1799 0.6719 J.
R 0.9352 0.8379 -0.4352

1+-+ Re ..dua11 I
R.aldUIIl2

........,..,..

I'r ++
·1

·2

.,
0 10 " 20 2. '0 35 40.me
Fig. 1 (Case I) Isolation of fault 11

1+-+ =:::~::~ I

-2

-1

Fig. 2 (Case 2) Isolation of fault 12

10 15 20 25 30 35 40.me

(

1+-+

-,'----:,........~,--~---~-~-~---'e 10 HI, 20 25 )0 )5 40.me

Fig. 3 (Case 3) Isolation of faults II and 12

I'
I

2

1 +d! +
-1

-2

-3
0

that all the eigenvalues of a system can be as­
signed arbitrarily to the designed ones. The use­
fulness of the proposed fault isolation filter design
method is verified by a numerical example.

5. Conclusion

The gain matrix H can be achieved from Eq.
(16) and is given by

[

- 12.6228 -13.2004 7.32431
= 87.2097 85.8014 -44.4782.

H 46.0167 54.1450 ~30.6620
0.9377 -0.1558 0.5623

11=5.0(t:;;;:5s),/2=3.0(t:;;;:lOs).

The simulation results are presented in Figs. 1,2,
and 3. It can be seen that the fault isolation filter
is functioning properly.

If Liu and Si's filter design method is applied to
the above example, the observer system (A

-t- HC) has an unstable pole. Therefore, their
method cannot be applied to this example.

For the simulations of the system, we now
consider the next three cases.

Case 1 : Fault input I is modeled as a soft bias
fault (/=5.0) occurring at t:;;;:5s.

Case 2 : Fault input 2 is modeled as a soft bias
fault (/= 3.0) occurring at t:;;;: lOs.

Case 3 : Simultaneous faults are given by

In this paper, a fault isolation filter design
methodology is proposed by using the left eigen­
structure assignment scheme. For an observable
system, it is shown that the corrupted r faults can
be simultaneously isolated if (r+ I) (or more)
output measurements are available. The proposed
fault isolation filter design method guarantees
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